Venerdi' - Fisica

Problema 1

Una barca dovrebbe attraversare un fiume cui corrente e' di v_b km per ora . Supponendo la barca viaggi ad una velocita' di v_a km/ora rispetto l'acqua, in che direzione rispetto quella dell'acqua dovrebbe dirigersi al fine di (a) minimizzare la distanza percorsa e (b) minimizzare il tempo della traversata. Si calcolino i tempi della traversata in ognuno dei due casi supponendo la larghezza del fiume sia di L m.

Problema 2

Ammettendo che un automobile possa arrestarsi improvvisamente (ad esempio, per impatto con un mezzo davanti a se'), che il massimo coefficient d'attrito tra le ruote ed il manto stradale sia 1 e che il tempo minimo di reazione di un conducente sia 1 secondo, si esprima la distanza minima d_{min} che dovrebbero mantenere i mezzi tra di loro in autostrada alla velocita' massima di v km/ora

Esercizio 3

Un corpo puntiforme di massa m è collegato mediante due fili ideali, di lunghezza rispettivamente: l_1 e l_2 ad un'asta rigida verticale che ruota con velocità angolare ω . I fili sono fissati all'asta in modo che, nella rotazione, il filo più corto sia ortogonale all'asta. Data la tensione massima che possono sopportare i fili (T_{max}), determinare il massimo valore raggiungibile di ω .

Esercizio 4

Un pendolo semplice costruito con un filo di ferro che sostiene un punto materiale, di massa trascurabile, subisce una variazione di temperatura di ΔT gradi celsius. Determinare la variazione percentuale del periodo del pendolo. Il coefficiente di dilatazione lineare del ferro vale λ .

Esercizio 5

Tre grammi di azoto (N_2 ; peso molecolare PM) alla temperatura iniziale T_0 sono posti in un contenitore di volume pari a V_0 , dotato di una valvola che si apre quando il gas raggiunge la pressione interna P_{int} . Sia N_{av} il numero di Avogadro e R la costante dei gas perfetti.

- a) quanto vale la pressione iniziale del gas?
- b) Quanto vale la T del gas quando la valvola si apre?
- c) Quanto calore è stato aggiunto al gas per raggiungere tale T?

Esercizio 6

Due cariche puntiformi q_1 e q_2 sono collocate a distanza di 1m tra di loro. Supponendo q_1 positiva, $q_2 = -q_1/3$ e che entrambi q_1 e q_2 siano fisse, dove si dovrebbe collocare una terza carica $q_3 = q_1/3$ a modo che rimanga ferma, senza necessita' di fissarla? (si indiche la

PO

posizione di q_3 con riferimento ad un sistema di coordinate cartesiane con q_1 all'origine e q_2 a distanza positiva di x_2 m sull'asse orizzontale.

Costanti fisiche:

Accelerazione gravitazionale = gCostante dielettrica del vuoto = ε_0

PE